Поиск значения / толкования слов

Раздел очень прост в использовании. В предложенное поле достаточно ввести нужное слово, и мы вам выдадим список его значений. Хочется отметить, что наш сайт предоставляет данные из разных источников – энциклопедического, толкового, словообразовательного словарей. Также здесь можно познакомиться с примерами употребления введенного вами слова.

гироскоп в словаре кроссвордиста

гироскоп

Толковый словарь русского языка. Д.Н. Ушаков

гироскоп

и жироскоп, гироскопа, м. (от греч. gyros - круглый и skopeo - смотрю) (спец.). Прибор в виде вращающегося на вертикально стоящей оси тела, служащий для поддерживания в состоянии равновесия каких-н. предметов. Волчок устроен по принципу гироскопа. Вагоны однорельсовой дороги сохраняют равновесие благодаря установленному в них гироскопу.

Толковый словарь русского языка. С.И.Ожегов, Н.Ю.Шведова.

гироскоп

-а, м. Используемый для автоматического регулирования устойчивости прибор с диском и свободной осью, всегда сохраняющей неизменное положение.

прил. гироскопический, -ая, -ое и га-роскопный, -ая, -ое.

Новый толково-словообразовательный словарь русского языка, Т. Ф. Ефремова.

гироскоп

м. Свободно подвешенное, быстро вращающееся тело (волчок), ось вращения которого может изменять свое положение в пространстве, но благодаря быстрому вращению сохраняет неизменное направление при любых изменениях положения подвеса.

Энциклопедический словарь, 1998 г.

гироскоп

ГИРОСКОП (от гиро... и скоп) твердое тело, быстро вращающееся вокруг имеющейся у него оси вращения. При этом ось вращения гироскопа должна иметь возможность свободно поворачиваться в пространстве, для чего гироскоп обычно закрепляют в т.н. кардановом подвесе (рис.). Основное свойство гироскопа с 3 степенями свободы состоит в том, что его ось устойчиво сохраняет приданное ей первоначальное направление (напр., на какую-нибудь звезду). Если же на такой гироскоп начинает действовать сила, то его ось отклоняется не в сторону действия силы, а в направлении, перпендикулярном к ней; в результате гироскоп начинает прецессировать (см. Прецессия). Свойство гироскопа широко используется в различных навигационных приборах гирокомпасе, гировертикали и др., а также для стабилизации движения самолетов (автопилот), ракет, морских судов, торпед и др.

Большая Советская Энциклопедия

Гироскоп

(от гиро... и ...скоп ), быстро вращающееся твёрдое тело, ось вращения которого может изменять своё направление в пространстве. Г. обладает рядом интересных свойств, наблюдаемых у вращающихся небесных тел, у артиллерийских снарядов, у детского волчка, у роторов турбин, установленных на судах, и др. На свойствах Г. основаны разнообразные устройства или приборы, широко применяемые в современной технике для автоматического управления движением самолётов, морских судов, ракет, торпед и др. объектов, для определения горизонта или географического меридиана, для измерения поступательных или угловых скоростей движущихся объектов (например, ракет) и многое др. Свойства Г. проявляются при выполнении двух условий:

  1. ось вращения Г. должна иметь возможность изменять своё направление в пространстве;

  2. угловая скорость вращения Г. вокруг своей оси должна быть очень велика по сравнению с той угловой скоростью, которую будет иметь сама ось при изменении своего направления.

    Простейшим Г. является детский волчок, быстро вращающийся вокруг своей оси ОА (рис. 1); ось ОА может изменять своё положение в пространстве, поскольку её конец А не закреплен. У Г., применяемых в технике, свободный поворот оси Г. можно обеспечить, закрепив сё в рамках (кольцах) 1, 2 т. н. карданова подвеса (рис. 2), позволяющего оси АВ занять любое положение в пространстве. Такой Г. имеет 3 степени свободы: он может совершать 3 независимых поворота вокруг осей АВ, DE и GK, пересекающихся в центре подвеса О, который остаётся по отношению к основанию 3 неподвижным. Если центр тяжести Г. совпадает с центром О, то Г. называется астатическим (уравновешенным), в противном случае ≈ тяжёлым.

    Первое свойство уравновешенного Г. с тремя степенями свободы состоит в том, что его ось стремится устойчиво сохранять в мировом пространстве приданное ей первоначальное направление. Если эта ось вначале направлена на какую-нибудь звезду, то при любых перемещениях основания прибора и случайных толчках она будет продолжать указывать на эту звезду, меняя свою ориентировку относительно земных осей. Впервые это свойство Г. использовал французский учёный Л. Фуко для экспериментального доказательства вращения Земли вокруг её оси (1852). Отсюда и само название «Г.», что в переводе означает «наблюдать вращение».

    Второе свойство Г. обнаруживается, когда на его ось (или рамку) начинают действовать сила или пара сил, стремящиеся привести ось в движение (т. е. создающие вращающий момент относительно центра подвеса). Под действием силы Р (рис. 3) конец А оси АВ Г. будет отклонять не в сторону действия силы, как это было бы при невращающемся роторе, а в направлении, перпендикулярном к этой силе; в результате Г. вместе с рамкой 1 начнёт вращаться вокруг оси DE, притом не ускоренно, а с постоянной угловой скоростью. Это вращение называется прецессией; оно происходит тем медленнее, чем быстрее вращается вокруг своей оси АВ сам Г. Если в какой-то момент времени действие силы прекратится, то одновременно прекратится прецессия и ось АВ мгновенно остановится, т. е. прецессионное движение Г. безынерционно.

    Величина угловой скорости прецессии определяется по формуле:

    где М ≈ момент силы Р центра О, a = áАОЕ, W ≈ угловая скорость собственного вращения Г. вокруг оси АВ, I ≈ момент инерции Г. относительно той же оси, h = АО ≈ расстояние от точки приложения силы до центра подвеса Г.; второе равенство имеет место, когда сила Р параллельна оси DE. Из формулы (1) непосредственно видно, что прецессия происходит тем медленнее, чем больше W, точнее, чем больше величина H = IW, называется собственным кинетическим моментом Г. Как найти направление прецессии Г. см. рис. 4.

    Наряду с прецессией ось Г. при действии на неё силы может ещё совершать т. н. нутацию ≈ небольшие, но быстрые (обычно незаметные на глаз) колебания оси около её среднего направления. Размахи этих колебаний у быстро вращающегося Г. очень малы и из-за неизбежного наличия сопротивлений быстро затухают. Это позволяет при решении большинства технических задач пренебречь нутацией и построить т. н. элементарную теорию Г., учитывающую только прецессию, скорость которой определяется формулой (1). Прецессионное движение можно наблюдать у детского волчка (рис. 5, а), для которого роль центра подвеса играет точка опоры О. Если ось такого волчка поставить под углом АОЕ к вертикали и отпустить, то она под действием силы тяжести Р будет отклоняться не в сторону действия этой силы, т. е. не вниз, а в перпендикулярном направлении, и начинает прецессировать вокруг вертикали. Прецессия волчка также сопровождается незаметными на глаз нутационными колебаниями, быстро затухающими из-за сопротивления воздуха. Под действием трения о воздух собственное вращение волчка постепенно замедляется, а скорость прецессии w соответственно возрастает. Когда угловая скорость вращения волчка становится меньше определенной величины, он теряет устойчивость и падает. У медленно вращающегося волчка нутационные колебания могут быть довольно заметными и, слагаясь с прецессией, существенно изменить картину движения оси волчка: конец А оси будет описывать ясно видимую волнообразную или петлеобразную кривую, то отклоняясь от вертикали, то приближаясь к ней (рис. 5, б).

    Другой пример прецессионного движения даёт артиллерийский снаряд (или пуля). На снаряд при его движении, кроме силы тяжести, действуют силы сопротивления воздуха, равнодействующая R которых направлена примерно противоположно скорости центра тяжести снаряда и приложена выше центра тяжести (рис. 6, а). Невращающийся снаряд под действием силы сопротивления воздуха будет «кувыркаться» и его полёт станет беспорядочным (рис. 6, б); при этом значительно возрастет сопротивление движению, уменьшится дальность полёта и снаряд не попадёт в цель головной частью. Вращающийся же снаряд обладает всеми свойствами Г., и сила сопротивления воздуха вызывает отклонение его оси не в сторону действия этой силы, а в перпендикулярном направлении. В результате ось снаряда медленно прецессирует вокруг прямой, по которой направлена скорость vc, т. е. вокруг касательной к траектории центра тяжести снаряда (рис. 6, в), что делает полёт правильным и обеспечивает на нисходящей ветви траектории попадание снаряда в цель головной частью.

    Наша планета Земля также является гигантским Г., совершающим прецессию (подробнее см. Прецессия в астрономии).

    Если ось АВ ротора Г. закрепить в одной рамке, которая может вращаться по отношению к основанию прибора вокруг оси DE (рис. 7), то Г. будет иметь возможность участвовать только в двух вращениях ≈ вокруг осей АВ и DE, т. е. будет иметь две степени свободы. Такой Г. не обладает ни одним из свойств Г. с тремя степенями свободы, однако у него есть другое очень интересное свойство: если основанию Г. сообщить вынужденное вращение с угловой скоростью w вокруг оси KL, образующей угол a с осью АВ, то на ось ротора со стороны подшипников А и В начнёт действовать пара сил с гироскопическим моментом

    Мгир = IWw sin a.════════(2)

    Эта пара стремится кратчайшим путём установить ось ротора Г. параллельно оси KL, причём так, чтобы и вращение ротора, и вынужденное вращение были видны происходящими в одну и ту же сторону.

    Рассмотрим, наконец, ротор, ось АВ которого непосредственно закреплена в основании D (рис. 8). Если это основание неподвижно, то ось не может изменять своё направление в пространстве и, следовательно, ротор никакими свойствами Г. не обладает. Однако если вращать основание вокруг некоторой оси KL с угловой скоростью w, то по предыдущему правилу ось АВ будет стремиться установиться параллельно оси KL. Этому движению препятствуют подшипники, в которых закреплена ось. В результате ротор будет давить на подшипники А и В с силами F1 и F2, называемыми гироскопическими силами.

    На морских судах и винтовых самолётах имеется много вращающихся частей: вал двигателя, ротор турбины или динамомашины, гребные или воздушные винты и т.п. При разворотах самолёта или судна, а также при качке на подшипники, в которых укреплены эти вращающиеся части, действуют указанные гироскопические силы и их необходимо учитывать при соответствующих инженерных расчётах; величины этих сил могут достигать нескольких тонн, и, если крепления подшипников не будут должным образом рассчитаны, то произойдёт авария.

    Теория Г. является важнейшим разделом динамики твёрдого тела, имеющего неподвижную точку. Перечисленные свойства Г. представляют собой следствия законов, которым подчиняется движение такого тела. Первое из свойств Г. с тремя степенями свободы есть проявление закона сохранения кинетического момента, а второе свойство ≈ проявление одной из теорем динамики, согласно которой изменение во времени кинетического момента тела равно моменту действующей на него силы.

    Гироскопы в технике. Применяемые в технике Г. выполняют обычно в виде маховичка с утолщённым ободом, весом от нескольких Г до десятков кГ, закрепленного в кардановом подвесе. Чтобы сообщить Г. быстрое вращение, его делают ротором быстроходного электромотора постоянного или переменного тока. В авиации применяются Г. с ротором в виде воздушной турбинки, приводимой в движение струей воздуха. Иногда Г. выполняют в форме шара (шар-Г.) с подвесом на воздушной плёнке, образуемой подачей сжатого воздуха. В ряде конструкций применяют поплавковый Г., ротор которого заключён в кожух, плавающий в жидкости; этим разгружаются подшипники кожуха и значительно уменьшается момент трения в них.

    Устройство конкретных гироскопических приборов основывается на тех или иных свойствах Г. с тремя или двумя степенями свободы. Свойство Г. с тремя степенями свободы неизменно сохранять направление своей оси в пространстве используется при конструировании приборов для автоматического управления движением самолётов (например, автопилота ), ракет, морских судов, торпед и т.п. Г. в этих приборах играет роль чувствительного элемента, регистрирующего отклонение движущегося объекта от заданного курса. Одновременно прибор содержит следящую систему, улавливающую сигнал об отклонении, усиливающую его и передающую силовому устройству (мотору), которое и возвращает объект на заданный курс, обычно с помощью рулей. Второе свойство Г. с тремя степенями свободы ≈ свойство прецессировать под действием приложенной силы ≈ положено в основу Г. направления (курсового Г.) и важных навигационных приборов: гирокомпаса ≈ прибора, определяющего направление географического меридиана, и гировертикали (или гирогоризонта) ≈ прибора, определяющего направление истинной вертикали (горизонта).

    При запуске ракеты необходимо с высокой степенью точности знать скорость её вертикального взлёта. С этой, казалось бы, очень трудной задачей, тоже легко справляется прецессирующий Г.

    В гироскопических приборах часто используют и свойства Г. с двумя степенями свободы. К таким приборам относятся авиационный указатель поворота , а также некоторые виды гиростабилизаторов , в частности устройства для пространственной стабилизации объекта (например, искусственного спутника Земли). Подробнее о всех этих и др. устройствах см. Гироскопические устройства .

    Современная техника требует от многих гироскопических приборов очень высокой точности, что вызывает большие технологические трудности при их изготовлении. Например, у некоторых приборов при весе ротора порядка 1 кГ для обеспечения нужной точности смещение центра тяжести от центра подвеса не должно превышать долей микрона, иначе момент силы тяжести вызовет нежелательную прецессию (уход) оси Г. Кроме того, на точность показаний приборов с Г. в кардановом подвесе влияет трение в осях. Всё это привело к разработке Г., основанных не на чисто механических, а на других физических принципах (см. также Квантовый гироскоп , Вибрационный гироскоп ).

    Лит.: Николаи Е. Л., Гироскоп и некоторые его технические применения, М. ≈ Л., 1947 (популярное изложение); Граммель Р., Гироскоп, его теория и применения, пер. с нем., т. 1≈2, М., 1952; Булгаков Б. В., Прикладная теория гироскопов, 2 изд., М., 1955; Ишлинский А. Ю., Механика гироскопических систем, М., 1963.

    С. М. Тарг.

Википедия

Гироскоп

Гироско́п (от — круг + — смотрю) — устройство, способное реагировать на изменение углов ориентации тела, на котором оно установлено, относительно инерциальной системы отсчета . Простейший пример гироскопа — Ж. Фуко в своём докладе в 1852 году во Французской Академии Наук . Доклад был посвящён способам экспериментального обнаружения вращения Земли в инерциальном пространстве . Этим и обусловлено название «гироскоп».

Примеры употребления слова гироскоп в литературе.

Картер поднял вверх багги, отклонившись в кабине насколько это было возможно назад, чтобы компенсировать потерю веса кислородных баллонов у себя за спиною, с целью облегчить нагрузку на гироскопы, предназначенные для включения только в случаях крайней необходимости.

Мертвой хваткой он вцепился в рукоятку дросселя подачи сжатого газа в реактивный движитель, другую руку изготовил для того, чтобы включить гироскопы именно в то мгновенье, когда, оторвав колеса от склона, он поднимет багги вверх.

Филаретыч горстями включает тумблеры на потолке -- в монотонный шум воздуха и гул выпрямителей вплетаются шорохи, шелест и журчание запустившихся приборов и систем, свист гироскопов, звон преобразователей и рычание вентиляторов охлаждения.

В результате вращения Земли существует экваториальное выпячивание, и Земля из-за него представляет собой как бы гигантский гироскоп.

Пожалуйста, - попросил Драм, круто поворачивая руль, так что протестующе завизжали гироскопы, - перестань меня отвлекать.

Томпсон знал, что под инерциальными данными имелось ввиду то, что для исчисления дальнейшего курса корабля машина будет использовать последнее известное местоположение лайнера, последнюю скорость и курс, а также случайные ускорения, отмеченные бортовыми гироскопами.

Да, кафедра гироскопов представляла собой мощный, сложившийся организм с богатыми авиастроительными традициями, по праву занимая целое ответвление в главном коридоре.

Катя всем весом навалилась на балансировочные гироскопы, чтобы удержать машину от опрокидывания на склоне.

Тем более, что кафедра гироскопов может быть на сигнализации, и на вахте может гореть мирный зеленый лучик, оберегая покой спящих комнат.

Он бодро крутился как гироскоп на устах кривой катастрофы, И это происходило потому, как твердо в это верил Патриций, что ни одна группа не обладала достаточной силой, чтобы его столкнуть.

Синхронизированные гироскопами антенны дирижабля направляют плазменный луч в Каракию магам Константина.

Торговец гироскопами яростно зарычал, крутя в воздухе запутавшейся в ремнях дубинкой, словно венчиком для сбивания яиц.

Для тех у кого гироскоп слабенький, созданы правила типа: выравнивать самолет, принимая верхнюю границу поземка за поверхность ВПП.

Он так надеялся на Лео Ауфмана, уж у него-то все пойдет как надо, он всех заставит улыбаться, и каждый раз, когда земля, повернувшись от солнца, накренится к черным безднам вселенной, маленький гироскоп, который сидит у Дугласа где-то внутри, станет поворачивать к солнцу.

Пока расклад человечьих нужд не займет свое место в мозжечке креатора, не станет его гироскопом, путеводным фактором, делать ему хоть в неформальном, хоть в официально-административном менеджменте нечего.

Источник: библиотека Максима Мошкова