Поиск значения / толкования слов

Раздел очень прост в использовании. В предложенное поле достаточно ввести нужное слово, и мы вам выдадим список его значений. Хочется отметить, что наш сайт предоставляет данные из разных источников – энциклопедического, толкового, словообразовательного словарей. Также здесь можно познакомиться с примерами употребления введенного вами слова.

фотоэффект в словаре кроссвордиста

Новый толково-словообразовательный словарь русского языка, Т. Ф. Ефремова.

фотоэффект

м. Изменение электрических свойств вещества под действием электромагнитных излучений (в физике).

Энциклопедический словарь, 1998 г.

фотоэффект

явление, связанное с освобождением электронов твердого тела (или жидкости) под действием электромагнитного излучения. Различают:

  1. внешний фотоэффект - испускание электронов под действием света (фотоэлектронная эмиссия), ?-излучения и др.;

  2. внутренний фотоэффект - увеличение электропроводности полупроводников или диэлектриков под действием света (фотопроводимость);

  3. вентильный фотоэффект - возбуждение светом электродвижущей силы на границе между металлом и полупроводником или между разнородными полупроводниками (см. p-n-переход). Фотоионизацию газов иногда также называют фотоэффектом.

Большая Советская Энциклопедия

Фотоэффект

испускание электронов веществом под действием электромагнитного излучения ( фотонов ). Ф. был открыт в 1887 Г. Герцем . Первые фундаментальные исследования Ф, выполнены А. Г. Столетовым (1888). Он установил, что в возникновении фототока в цепи, содержащей металлические электроды и источник напряжения, существенную роль играет освещение отрицательного электрода и что сила фототока пропорциональна интенсивности света. Ф. Ленард (1899) доказал, что при освещении металлов из них испускаются электроны. Первое теоретическое объяснение законов Ф. дал А. Эйнштейн (1905). В дальнейшем теория Ф. была развита в наиболее последовательном виде И. Е. Таммом и С. П. Шубиным (1931). Большой вклад в экспериментальное исследование Ф. внесли работы А. Ф. Иоффе (1907), П. И. Лукирского и С. С. Прилежаева (1928).

Ф. √ квантовое явление, его открытие и исследование сыграли важную роль в экспериментальном обосновании квантовой теории: только на её основе оказалось возможным объяснение закономерностей Ф. Свободный электрон не может поглотить фотон, т.к. при этом не могут быть одновременно соблюдены законы сохранения энергии и импульса. Ф. из атома, молекулы или конденсированной среды возможен из-за связи электрона с окружением. Эта связь характеризуется в атоме энергией ионизации , в конденсированной среде √ работой выхода . Закон сохранения энергии при Ф. выражается соотношением Эйнштейна: , где E √ кинетическая энергия фотоэлектрона, √ энергия фотона, ═√ Планка постоянная, Ei √ энергия ионизации атома или работа выхода электрона из тела. При ═< Ei, Ф. невозможен.

Ф. может наблюдаться в газах на отдельных атомах и молекулах (фотоионизация). Первичным актом здесь является поглощение фотона атомом и ионизация с испусканием электрона. С высокой степенью точности можно считать, что вся энергия фотона за вычетом энергии ионизации передаётся испускаемому электрону. В конденсированных средах механизм поглощения фотонов зависит от их энергии. При , равных или не очень сильно (в десятки и сотни раз) превышающих работу выхода, излучение поглощается электронами проводимости (в металлах ) или валентными электронами (в полупроводниках и диэлектриках ), коллективизированными в твёрдом теле. В результате может наблюдаться фотоэлектронная эмиссия (внешний фотоэффект) с граничной энергией фотонов, равной работе выхода, или фотоэффект внутренний ( фотопроводимость и др. фотоэлектрические явления) с граничной энергией фотонов, равной ширине запрещенной зоны.

При энергиях фотонов , во много раз превышающих энергию межатомных связей в конденсированной среде ( гамма-излучение ), фотоэлектроны могут вырываться из «глубоких» оболочек атома. Влияние среды на первичный акт Ф. в этом случае пренебрежимо мало по сравнению с энергией связи электрона в атоме и Ф. происходит так же, как на изолированных атомах. Эффективное сечение Ф. sф сначала растет с w, а затем, когда становится больше энергии связи электронов самых глубоких оболочек атома, уменьшается. Такая зависимость sф от w качественно объясняется тем, что чем больше по сравнению с Ei, тем пренебрежимее связь электрона с атомом, а для свободного электрона Ф. невозможен. Вследствие того, что электроны К-оболочки наиболее сильно связаны в атоме и эта связь возрастает с атомным номером Z, sф имеет наибольшее значение для К-электронов и быстро увеличивается при переходе к тяжёлым элементам (~ Z5). При порядка атомных энергий связи Ф. является преобладающим механизмом поглощения гамма-излучения атомами, при более высоких энергиях фотонов его роль становится менее существенной по сравнению с др. механизмами: Комптона эффектом , рождением электронно-позитронных пар.

Ядерным Ф. называется поглощение g-кванта атомным ядром, сопровождающееся его перестройкой (см. Фотоядерные реакции ).

Ф. широко используется в исследованиях строения вещества √ атомов, атомных ядер, твёрдых тел (см. Фотоэлектрические явления ), а также в фотоэлектронных приборах.

Лит.: Hertz Н., Uber einen Einfluss des ultravioletten Lichtes auf die electrische Entladung, «Annalen der Physik und Chemie», 1887, Bd 31; Столетов А. Г., Избр. соч., М. √ Л., 1950; Эйнштейн А., Собр. научн. тр., т. 3, М., 1966; Tamm Ig., Scliubin S., Zur Theorie des Photoeffektes an Metalien, «Zeitschrift fur Physik», 1931, Bd 68; Лукирский П. И., О фотоэффекте, Л. √ М., 1933; Стародубцев С. В., Романов А. М., Взаимодействие гамма-излучения с веществом, ч. 1, Таш., 1964.

Т. М. Лифшиц.

Википедия

Фотоэффект

Фотоэффе́кт или фотоэлектрический эффект — испускание электронов веществом под действием света или любого другого электромагнитного излучения . В конденсированных веществах выделяют внешний и внутренний фотоэффект.

Законы внешнего фотоэффекта:

Формулировка 1-го закона фотоэффекта : Сила фототока прямо пропорциональна плотности светового потока.

Согласно 2-му закону фотоэффекта, максимальная кинетическая энергия вырываемых светом электронов линейно возрастает с частотой света и не зависит от его интенсивности .

3-й закон фотоэффекта: для каждого вещества при определенном состоянии его поверхности существует граничная частота света, ниже которой фотоэффект не наблюдается. Эта частота и соответствующая длина волны называется красной границей фотоэффекта

Теоретическое объяснение этих законов было дано в 1905 году Эйнштейном . Согласно ему, электромагнитное излучение представляет собой поток отдельных квантов ( фотонов ) с энергией каждый, где — постоянная Планка . При фотоэффекте часть падающего электромагнитного излучения от поверхности металла отражается, а часть проникает внутрь поверхностного слоя металла и там поглощается. Поглотив фотон, электрон получает от него энергию и, совершая работу выхода , покидает металл: hν = A + W,  где W — максимальная кинетическая энергия, которую имеет электрон при вылете из металла. Это и есть поглотивший его фотон.

Примеры употребления слова фотоэффект в литературе.

Ведь нисколько не менее отчетливо он сознавал другое: волновой теории пришлось отступиться от фотоэффекта, где свет, безусловно, вел себя как ливень частиц.

Источник: библиотека Максима Мошкова