Поиск значения / толкования слов

Раздел очень прост в использовании. В предложенное поле достаточно ввести нужное слово, и мы вам выдадим список его значений. Хочется отметить, что наш сайт предоставляет данные из разных источников – энциклопедического, толкового, словообразовательного словарей. Также здесь можно познакомиться с примерами употребления введенного вами слова.

Энциклопедический словарь, 1998 г.

холла эффект

возникновение в проводнике с током плотностью j, помещенном в магнитное поле H?j, электрического поля (поля Холла), направленного перпендикулярно H и j, напряженность которого Eх = RjH, где R - постоянная Холла, зависящая главным образом от знака и концентрации носителей заряда. Холла эффект используется главным образом для исследования свойств твердых тел и в измерительной технике.

Большая Советская Энциклопедия

Холла эффект

появление в проводнике с током плотностью j, помещенном в магнитное поле Н, электрического поля Ex, перпендикулярного Н и I. Напряжённость электрического поля (поля Холла) равна: Ex = Rhjsin a,═══(

  1. где a угол между векторами Н и f (a < 180╟). Если H ^ j, то величина поля Холла Ex максимальна: Ex = RHj. Величина R, называется коэффициентом Холла, является основной характеристикой Х. э. Эффект открыт Э. Г. Холлом в 1879 в тонких пластинках золота. Для наблюдения Х. э. вдоль прямоугольных пластин из исследуемых веществ, длина которых l значительно больше ширины b и толщины d, пропускается ток I = jbd (см. рис.); магнитное поле перпендикулярно плоскости пластинки. На середине боковых граней, перпендикулярно току, расположены электроды, между которыми измеряется эдс Холла Vx.

    Vx = Exb = RHj/d.═══(

  2. Т. к. эдс Холла меняет знак на обратный при изменении направления магнитного поля на обратное, то Х. э. относится к нечётным гальваномагнитным явлениям .

    Простейшая теория Х. э. объясняет появление эдс Холла взаимодействием носителей тока (электронов проводимости и дырок) с магнитным полем. Под действием электрического поля носители заряда приобретают направленное движение (дрейф), средняя скорость которого (дрейфовая скорость) vдр ¹ 0. Плотность тока в проводнике j = n×evдр, где n ≈ концентрация числа носителей, e ≈ их заряд. При наложении магнитного поля на носители действует Лоренца сила : F = е [Нvдр], под действием которой частицы отклоняются в направлении, перпендикулярном vдр и Н. В результате в обеих гранях проводника конечных размеров происходит накопление заряда и возникает электростатическое поле ≈ поле Холла. В свою очередь поле Холла действует на заряды и уравновешивает силу Лоренца. В условиях равновесия eEx = eHvдр, , отсюда R = 1/ne см3/кулон. Знак R совпадает со знаком носителей тока. Для металлов , у которых концентрация носителей (электронов проводимости) близка к плотности атомов (n » 1022 см-

  3. , R ~ 10-3см3/кулон, у полупроводников концентрация носителей значительно меньше и R~10-5см3/кулон. Коэффициент Холла R может быть выражен через подвижность носителей заряда m = еt/m* и удельную электропроводность s = j/E = envдрЕ:

    R = m/s.═══(3)

    Здесь m*≈ эффективная масса носителей, t ≈ среднее время между 2 последовательными соударениями с рассеивающими центрами.

    Иногда при описании Х. э. вводят угол Холла j между током j и направлением суммарного поля Е: tgj = Ex/E = Wt, где W ≈ циклотронная частота носителей заряда. В слабых полях (Wt << 1) угол Холла j » Wt можно рассматривать как угол, на который отклоняется движущийся заряд за время t. Приведённая теория справедлива для изотропного проводника (в частности, для поликристалла ), у которого m* и t ≈ постоянные величины. Коэффициент Холла (для изотропных полупроводников) выражается через парциальные проводимости sэ и sд и концентрации электронов nэ и дырок nд:

    ═════(

  4. При nэ= nд= n для всей области магнитных полей , а знак R указывает на преобладающий тип проводимости.

    Для металлов величина R зависит от зонной структуры и формы Ферми поверхности . В случае замкнутых поверхностей Ферми и в сильных магнитных полях (Wt >> 1) коэффициент Холла изотропен, а выражения для R совпадают с формулой 4, б. Для открытых поверхностей Ферми коэффициент R анизотропен. Однако, если направление Н относительно кристаллографических осей выбрано так, что не возникает открытых сечений поверхности Ферми, то выражение для R аналогично 4, б.

    В ферромагнетиках на электроны проводимости действует не только внешнее, но и внутреннее магнитное поле: В = Н + 4pМ. Это приводит к особому ферромагнитному Х. э. Экспериментально обнаружено, что Ex= (RB + RaM) j, где R ≈ обыкновенный, a Ra ≈ необыкновенный (аномальный) коэффициент Холла. Между Raи удельным электросопротивлением ферромагнетиков установлена корреляция.

    Исследования Х. э. сыграли важную роль в создании электронной теории твёрдого тела . Х. э. ≈ один из наиболее эффективных современных методов изучения энергетического спектра носителей заряда в металлах и полупроводниках. Зная R, можно определить знак носителей и оценить их концентрацию, а также часто сделать заключение о количестве примесей в веществе, например в полупроводнике. Он имеет также ряд практических применений: используется для измерения напряжённости магнитного поля (см. Магнитометр ), усиления постоянных токов (в аналоговых вычислительных машинах ), в измерительной технике (бесконтактный амперметр) и т.д. (подробно см. Холла эдс датчик ).

    Лит.: Hall Е. Н., On the new action of magnetism on a permanent electric current, «The Philosophical Magazine», 1880, v. 10, p. 301; Ландау Л. Д., Лифшиц Е. М., Электродинамика сплошных сред, М., 1959; Займан Дж., Электроны и фононы. Теория явлений переноса в твердых телах, пер. с англ., М., 1962; Вайсс Г., физика гальваномагнитных полупроводниковых приборов и их применение, пер. с нем., М., 1974; Ангрист Ст., Гальваномагнитные и термомагнитные явления, в сборнике: Над чем думают физики, в. 8. Физика твёрдого тела. Электронные свойства твёрдого тела, М., 1972, с. 45≈55.

    Ю. П. Гайдуков.