Поиск значения / толкования слов

Раздел очень прост в использовании. В предложенное поле достаточно ввести нужное слово, и мы вам выдадим список его значений. Хочется отметить, что наш сайт предоставляет данные из разных источников – энциклопедического, толкового, словообразовательного словарей. Также здесь можно познакомиться с примерами употребления введенного вами слова.

фотопроводимость в словаре кроссвордиста

Энциклопедический словарь, 1998 г.

фотопроводимость

увеличение электрической проводимости полупроводника под действием света. Причина фотопроводимости - увеличение концентрации носителей заряда - электронов в зоне проводимости и дырок в валентной зоне.

Большая Советская Энциклопедия

Фотопроводимость

фоторезистивный эффект, увеличение электропроводности полупроводника под действием электромагнитного излучения. Впервые Ф. наблюдалась в Se У. Смитом (США) в 1873. Обычно Ф. обусловлена увеличением концентрации носителей тока под действием света (концентрационная Ф.). Она возникает в результате нескольких процессов: фотоны «вырывают» электроны из валентной зоны и «забрасывают» их в зону проводимости (рис. 1), при этом одновременно возрастает число электронов проводимости и дырок (собственная Ф.); электроны из заполненной зоны забрасываются на свободные примесные уровни √ возрастает число дырок (дырочная примесная Ф.); электроны забрасываются с примесных уровней в зону проводимости (электронная примесная Ф.). Возможно комбинированное возбуждение Ф. «собственным» и «примесным» светом: «собственное» возбуждение в результате последующих процессов захвата носителей приводит к заполнению примесных центров и, следовательно, к появлению примесной Ф. (индуцированная примесная Ф.). Концентрационная Ф. может возникать только при возбуждении достаточно коротковолновым излучением, когда энергия фотонов превышает либо ширину запрещенной зоны (в случае собственной и индуцированной Ф.), либо расстояние между одной из зон и примесным уровнем (в случае электронной или дырочной примесной Ф.).

В той или иной степени Ф. обладают все неметаллические твёрдые тела. Наиболее изучена и широко применяется в технике Ф. полупроводников Ge, Si, Se, CdS, CdSe, InSb, GaAs, PbS и др. Величина концентрационной Ф. пропорциональна квантовому выходу h (отношению числа образующихся носителей к общему числу поглощённых фотонов) и времени жизни неравновесных (избыточных) носителей, возбуждаемых светом (фотоносителей). При освещении видимым светом h обычно меньше 1 из-за «конкурирующих» процессов, приводящих к поглощению света, но не связанных с образованием фотоносителей (возбуждение экситонов, примесных атомов, колебаний кристаллической решётки и др.). При облучении вещества ультрафиолетовым или более жёстким излучением h > 1, т.к. энергия фотона достаточно велика, чтобы не только вырвать электрон из заполненной зоны, но и сообщить ему кинетическую энергию, достаточную для ударной ионизации . Время жизни носителя (т. е. время, которое он в среднем проводит в свободном состоянии) определяется процессами рекомбинации. При прямой (межзонной) рекомбинации фотоэлектрон сразу переходит из зоны проводимости в валентную зону. В случае рекомбинации через примесные центры электрон сначала захватывается примесным центром, а затем попадает в валентную зону. В зависимости от структуры материала, степени его чистоты и температуры время жизни может меняться в пределах от долей сек до 10-8 сек.

Зависимость Ф. от частоты излучения определяется спектром поглощения полупроводника. По мере увеличения коэффициента поглощения Ф. сначала достигает максимума, а затем падает. Спад Ф. объясняется тем, что при большом коэффициенте поглощения весь свет поглощается в поверхностном слое проводника, где очень велика скорость рекомбинации носителей (поверхностная рекомбинация, рис. 2).

Возможны и др. виды Ф., не связанные с изменением концентрации свободных носителей. Так, при поглощении свободными носителями длинноволнового электромагнитного излучения, не вызывающего межзонных переходов и ионизации примесных центров, происходит увеличение энергии («разогрев») носителей, что приводит к изменению их подвижности и, следовательно, к увеличению электропроводности. Такая подвижностная Ф. убывает при высоких частотах и перестаёт зависеть от частоты при низких частотах. Изменение подвижности под действием излучения может быть обусловлено не только увеличением энергии носителей, но и влиянием излучения на процессы рассеяния электронов кристаллической решёткой.

Изучение Ф. √ один из наиболее эффективных способов исследования свойств твёрдых тел . Явление Ф. используется для создания фоторезисторов , чувствительных и малоинерционных приёмников излучения в очень широком диапазоне длин волн √ от g-лучей до диапазона сверхвысоких частот .

Лит.: Рывкин С. М., Фотоэлектрические явления в полупроводниках, М., 1963; Стильбанс Л. С., Физика полупроводников, М., 1967; см. также лит. при ст. Полупроводники .

Э. М. Эпштейн.

Википедия

Фотопроводимость

Фотопроводи́мость — явление изменения электропроводности вещества при поглощении электромагнитного излучения, такого как видимое , инфракрасное , ультрафиолетовое или рентгеновское излучение .