Поиск значения / толкования слов

Раздел очень прост в использовании. В предложенное поле достаточно ввести нужное слово, и мы вам выдадим список его значений. Хочется отметить, что наш сайт предоставляет данные из разных источников – энциклопедического, толкового, словообразовательного словарей. Также здесь можно познакомиться с примерами употребления введенного вами слова.

Большая Советская Энциклопедия

Траектория (физич., математич.)

Траектория (от позднелат. trajectorius ≈ относящийся к перемещению), непрерывная линия, которую описывает точка при своём движении. Если Т. ≈ прямая линия, движение точки называется прямолинейным, в противном случае ≈ криволинейным. Вид Т. свободной материальной точки зависит от действующих на точку сил, начальных условий движения и от того, по отношению к какой системе отсчёта движение рассматривается; для несвободной точки вид Т. зависит ещё от наложенных связей (см. Связи механические ).

Например, по отношению к Земле (если пренебречь её суточным вращением) Т. свободной материальной точки, отпущенной без начальной скорости и движущейся под действием силы тяжести, будет прямая линия (вертикаль), а если точке сообщить начальную скорость u0, не направленную вдоль вертикали, то при отсутствии сопротивления воздуха её Т. будет парабола (рис. 1).

Т. точки, движущейся в центральном поле тяготения , в зависимости от величины начальной скорости может быть эллипс, парабола или гипербола (в частных случаях ≈ прямая линия или окружность). Так, в поле тяготения Земли, если считать его центральным и пренебречь сопротивлением среды, Т. точки, получившей вблизи поверхности Земли начальную скорость u0, направленную горизонтально (рис. 2), будет: окружность, когда 7,9 км/сек (первая космическая скорость); эллипс, когда ; парабола, когда ═11,2 км/сек (вторая космическая скорость) и гипербола, когда . Здесь R ≈ радиус Земли, g≈ ускорение силы тяготения вблизи земной поверхности, а движение рассматривается по отношению к осям, перемещающимся вместе с центром Земли поступательно относительно звёзд; для тела (например, спутника) всё сказанное относится к Т. его центра тяжести. Если же направление u0 не будет ни горизонтальным, ни вертикальным, то при ═Т. точки будет представлять собой дугу эллипса, пересекающую поверхность Земли; таковы Т. центра тяжести баллистических ракет.

Пример несвободной точки ≈ небольшой груз, подвешенный на нити (см. Маятник ). Если нить отклонить от вертикали и отпустить без начальной скорости, то Т. груза будет дугой окружности, а если при этом грузу сообщить начальную скорость, не лежащую в плоскости отклонения нити, то Т. груза могут быть кривые довольно сложного вида, лежащие на поверхности сферы (сферический маятник), но в частном случае это может быть окружность, лежащая в горизонтальной плоскости (конический маятник).

Т. точек твёрдого тела зависят от закона движения тела. При поступательном движении тела Т. всех его точек одинаковы, а во всех других случаях движения эти Т. будут вообще разными для разных точек тела. Например, у колеса автомобиля на прямолинейном участке пути Т. точки обода колеса по отношению к шоссе будет циклоида, а Т. центра колеса ≈ прямая линия. По отношению же к кузову автомобиля Т. точки обода будет окружность, а центр колеса ≈ неподвижен.

Определение Т. имеет важное значение как при теоретических исследованиях, так и при решении многих практических задач.

С. М. Тарг.