Большая Советская Энциклопедия
численный метод решения математических задач, при котором искомые величины представляют вероятностными характеристиками какого-либо случайного явления, это явление моделируется, после чего нужные характеристики приближённо определяют путём статистической обработки «наблюдений» модели. Например, требуется рассчитать потоки тепла в нагреваемой тонкой металлической пластине, на краях которой поддерживается нулевая температура. Распределение тепла описывается тем же уравнением, что и расплывание пятна краски в слое жидкости (см. Теплопроводность , Диффузия ). Поэтому моделируют плоское броуновское движение частиц «краски» по пластине, следя за их положениями в моменты kt, k = 0, 1, 2,... Приближённо принимают, что за малый интервал t частица перемещается на шаг h равновероятно во всех направлениях. Каждый раз направление выбирается случайным образом, независимо от всего предыдущего. Соотношение между t и h определяется коэффициентом теплопроводности. Движение начинается в источнике тепла и кончается при первом достижении края (наблюдается налипание «краски» на край). Поток Q (C) тепла через участок С границы измеряется количеством налипшей краски. При общем количестве N частиц согласно больших чисел закону такая оценка даёт случайную относительную ошибку порядка ═(и систематическую ошибку порядка h из-за дискретности выбранной модели).
Искомую величину представляют математическим ожиданием числовой функции f от случайного исхода w явления: , т. е. интегралом по вероятностной мере Р (см. Мера множества ). На оценку , где w1,..., wN -смоделированные исходы, можно смотреть как на квадратурную формулу для указанного интеграла со случайными узлами wk и случайной погрешностью RN обычно принимают , считая большую погрешность пренебрежимо маловероятной; дисперсия Df может быть оценена в ходе наблюдений (см. Ошибок теория ).
В разобранном выше примере f (w)= 1, когда траектория кончается на С; иначе f (w) = 0. Дисперсия . Интеграл берётся по пространству ломаных со звеньями постоянной длины; он может быть выражен через кратные интегралы.
Проведение каждого «эксперимента» распадается на две части: «розыгрыш» случайного исхода w и последующее вычисление функции f (w). Когда пространство всех исходов и вероятностная мера Р слишком сложны, розыгрыш проводится последовательно в несколько этапов (см. пример). Случайный выбор на каждом этапе проводится с помощью случайных чисел, например генерируемых каким-либо физическим датчиком; употребительна также их арифметическая имитация ≈ псевдослучайные числа (см. Случайные и псевдослучайные числа ). Аналогичные процедуры случайного выбора используются в математической статистике и теории игр.
С. м. широко применяется для решения на ЭВМ интегральных уравнений, например при исследовании больших систем . Они удобны своей универсальностью, как правило, не требуют большого объёма памяти. Недостаток ≈ большие случайные погрешности, слишком медленно убывающие при увеличении числа экспериментов. Поэтому разработаны приёмы преобразования моделей, позволяющие понижать разброс наблюдаемых величин и объём модельного эксперимента.
Лит.: Метод статистических испытаний (Метод Монте-Карло), М., 1962; Ермаков С. М., Метод Монте-Карло и смежные вопросы, М., 1971.
Н. Н. Ченцов.
Википедия
Статистическое и эконометрическое модели́рование — исследование объектов познания на их статистических моделях ; построение и изучение моделей реально существующих предметов, процессов или явлений (например: экономических процессов в эконометрике ) с целью получения объяснений этих явлений, а также для предсказания явлений или показателей, интересующих исследователя.
Оценка параметров таких моделей производится с помощью статистическиx методов . Например: метод максимального правдоподобия , метод наименьших квадратов , метод моментов .
Примером регрессионной эконометрической модели может послужить функция потребления Кейнса :
Y = b_1 + b_2×Xгде Y — расходы, X — доход, b_1 и b_2 — параметры уравнения (parameters), u — стохастическая ошибка (disturbance, error term) [не участвует в уравнении].