Поиск значения / толкования слов

Раздел очень прост в использовании. В предложенное поле достаточно ввести нужное слово, и мы вам выдадим список его значений. Хочется отметить, что наш сайт предоставляет данные из разных источников – энциклопедического, толкового, словообразовательного словарей. Также здесь можно познакомиться с примерами употребления введенного вами слова.

Большая Советская Энциклопедия

Пуассона распределение

одно из важнейших распределений вероятностей случайных величин, принимающих целочисленные значения. Подчинённая П. р. случайная величина Х принимает лишь неотрицательные значения, причём Х = kc вероятностью

, k = 0, 1, 2,...

(l ≈ положительный параметр). Своё название «П. р.» получило по имени С. Д. Пуассона (1837). Математическое ожидание и дисперсия случайной величины, имеющей П. р. с параметром l, равны l. Если независимые случайные величины X1 и X2 имеют П. р. с параметрами l1 и l2, то их сумма X1+ X2 имеет П. р. с параметрами l1 + l2.

В теоретико-вероятностных моделях П. р. используется как аппроксимирующее и как точное распределение. Например, если при n независимых испытаниях события A1,..., An осуществляются с одной и той же малой вероятностью р, то вероятность одновременного осуществления каких-либо k событий (из общего числа n) приближённо выражается функцией pk (np) (математическое содержание этого утверждения при больших значениях n и 1/р формулируются Пуассона теоремой ). В частности, такая модель хорошо описывает процесс радиоактивного распада и многие др. физические явления.

Как точное П. р. появляется в теории случайных процессов. Например, при расчёте нагрузки линий связи обычно предполагают, что количества вызовов, поступивших за непересекающиеся интервалы времени, суть независимые случайные величины, подчиняющиеся П. р. с параметрами, значения которых пропорциональны длинам соответствующих интервалов времени (см. Пуассоновский процесс ).

В качестве оценки неизвестного параметра l по n наблюдённым значениям независимых случайных величин X1,..., Xn используется их арифметическое среднее X = (X1 +... + Xn)/n, поскольку эта оценка лишена систсматической ошибки и её квадратичное отклонение минимально (см. Статистические оценки ).

Лит.: Гнеденко Б. В., Курс теории вероятностей, 5 изд., М. ≈ Л., 1969; Феллер В., Введение в теорию вероятностей и ее приложения, пер. с англ., 2 изд., т. 1, М., 1967.