Поиск значения / толкования слов

Раздел очень прост в использовании. В предложенное поле достаточно ввести нужное слово, и мы вам выдадим список его значений. Хочется отметить, что наш сайт предоставляет данные из разных источников – энциклопедического, толкового, словообразовательного словарей. Также здесь можно познакомиться с примерами употребления введенного вами слова.

Большая Советская Энциклопедия

Приближённое решение

дифференциальных уравнений, получение аналитических выражений (формул) или численных значений, приближающих с той или иной степенью точности искомое частное решение дифференциального уравнения. П. р. дифференциальных уравнений в виде аналитического выражения может быть найдено методом рядов (степенных, тригонометрических и др.), методом малого параметра, последовательных приближений методом , Ритца и Галёркина методами , Чаплыгина методом . Каждый из этих методов определяет один или несколько бесконечных процессов, с помощью которых при выполнении определённых условий можно получить точное решение задачи. Для получения П. р. останавливаются на некотором шаге процесса. Если решение ищется в виде бесконечного ряда, то за П. р. принимают конечный отрезок ряда. Например, пусть требуется найти решение дифференциального уравнения y" = f (x, у), удовлетворяющее начальным условиям у (х0) = y0, причём известно, что f (x, у) ≈ аналитическая функция х, у в некоторой окрестности точки (х0, y0). Тогда решение можно искать в виде степенного ряда: y (x) - y (x0) = . Коэффициенты Ak ряда могут быть найдены либо по формулам: A1= y▓0= f (x0, y0); либо с помощью неопределенных коэффициентов метода . Метод рядов позволяет находить решение лишь при малых значениях величины х ≈ х0. Часто (например, при изучении периодических движений в небесной механике и теории колебаний) встречается случай, когда уравнение состоит из членов двоякого вида: главных и второстепенных, причём второстепенные члены характеризуются наличием в них малых постоянных множителей. Обычно после отбрасывания второстепенных членов получается уравнение, допускающее точное решение. Тогда решение основного уравнения можно искать в виде ряда, первым членом которого является решение уравнения без второстепенных членов, а остальные члены ряда расположены по степеням малых постоянных величин, входящих во второстепенные члены (малых параметров). При этом уравнения для коэффициентов при степенях малых параметров линейны, что облегчает их решение. В роли малого параметра иногда выступают начальные значения (например, при изучении колебаний около положения равновесия). Метод малого параметра был использован при решении задачи о возмущённом движении в небесной механике Л. Эйлером и П. Лапласом . Теоретическое обоснование этого метода дали А. М. Ляпунов и А. Пуанкаре . К численным методам относятся методы, позволяющие находить П. р. при некоторых значениях аргумента (т. е. получать таблицу приближённых значений искомого решения), пользуясь известными значениями решения в одной или нескольких точках. Такими методами являются, например, метод Эйлера, метод Рунге и целый ряд разностных методов. Поясним эти методы на примере уравнения y▓▓ = f (x, у) с начальным условием у (х0) = y0. Пусть точное решение этого уравнения представлено в некоторой окрестности точки х0 в виде ряда по степеням h = х ≈ х0 Основной характеристикой точности формул П. р. дифференциальных уравнений является требование, чтобы первые k членов разложения в ряд по степеням h П. р. совпадали с первыми k членами разложения в ряд по степеням h точного решения. Основная идея метода Эйлера заключается в применении метода рядов для вычисления приближённых значений решения у (х) в точках x1, x2,..., xn некоторого фиксированного отрезка [х0, b] Так, для того чтобы вычислить у (х1), где х1 = х0 + h, h = (b ≈ x0)/n, представляют у (х1) в виде конечного числа членов ряда по степеням h = х1≈ х0. Например, ограничиваясь первыми двумя членами ряда, получают для вычисления у (xk) формулы: , Это т. н. метод ломаных Эйлера (на каждом отрезке [xk, xk+1] интегральная кривая заменяется прямолинейным отрезком ≈ звеном ломаной Эйлера). Погрешность метода пропорциональна h2. В методе Рунге вместо того, чтобы отыскивать производные, находят такую комбинацию значений f (x, у) в некоторых точках, которая даёт с определённой точностью несколько первых членов степенного ряда для точного решения уравнения. Например, правая часть формулы Рунге: , где ; ; ; дает первые пять членов степенного ряда с точностью до величин порядка h5. В разностных формулах П. р. удаётся несколько раз использовать уже вычисленные значения правой части. Решение ищется в виде линейной комбинации у (xi), hi и разностей Dihj, где hj = hf (xj, yj); Dhj = hj+1 - hj; Dihj = Di-1hj+1 - Di-1hj. Примером разностной формулы П. р. является экстраполяционная формула Адамса. Так, формула Адамса, учитывающая «разности» 3-го порядка: даёт решение у (х) в точке xk с точностью до величин порядка h4. Для уравнений 2-го порядка можно получить формулы численного интегрирования путём двукратного применения Формула k = 2 k = 3 k = 4 (1 + x)3 » 1 + 3x 0,04 0,012 0,004 0,06 0,022 0,007 0,19 0,062 0,020 0,20 0,065 0,021 0,31 (17╟48") 0,144 (8╟15") 0,067 (3╟50") 0,10 (5╟43") 0,031 (l"48") 0,010 (0╟34") 0,25 (14╟8") 0,112 (6╟25") 0,053 (3╟2") 0,14 0,47 0,015 0,04 0,014 0,004 0,25 0,119 0,055 формулы Адамса. Норвежский математик К. Стёрмер получил формулу: особенно удобную для решения уравнений вида у" = f (x, у). По этой формуле находят D2yn-1, а затем yn+1 = yn +Dyn+1 + D2yn-

  1. Найдя yn+1, вычисляют y▓▓n+1= f (xn+1, yn+1), находят разности и повторяют процесс далее.

    Указанные выше численные методы распространяются и на системы дифференциальных уравнений.

    Значение численных методов решения дифференциальных уравнений особенно возросло с распространением ЭВМ.

    Кроме аналитических и численных методов, для П. р. дифференциальных уравнений применяются графические методы. В простейшем из них строят поле направлений, определяемое дифференциальным уравнением, т. е. в некоторых точках рисуют направления касательной к интегральной кривой, проходящей через эту точку. Затем проводят кривую так, чтобы касательные к ней имели направления поля (см. Графические вычисления ).

    Лит.: Березин И. С., Жидков Н. П., Методы вычислений, 2 изд., т. 2, М.. 1962; Бахвалов Н. С., Численные методы, М., 1973: Коллатц Л., Численные методы решения дифференциальных уравнений, пер. с нем., М., 1953; Милн В. Э., Численное решение дифференциальных уравнений, пер, с англ., М., 1955.