Поиск значения / толкования слов

Раздел очень прост в использовании. В предложенное поле достаточно ввести нужное слово, и мы вам выдадим список его значений. Хочется отметить, что наш сайт предоставляет данные из разных источников – энциклопедического, толкового, словообразовательного словарей. Также здесь можно познакомиться с примерами употребления введенного вами слова.

Большая Советская Энциклопедия

Полугруппа

одно из основных понятий современной алгебры. П. называется множество с определённой на нём операцией, подчинённой закону ассоциативности . Понятие П. есть обобщение понятия группы : из аксиом группы остаётся лишь одна; этим объясняется и термин «П.». Примеры П. в математике весьма многочисленны. Это различные множества чисел вместе с операцией сложения или умножения, замкнутые относительно рассматриваемой операции (т. е. содержащие вместе с любыми двумя своими элементами их сумму или, соответственно, произведение), П. матриц относительно умножения, П. функций относительно операции умножения, П. множеств относительно операции пересечения или объединения и т.д. Один из простейших примеров П. ≈ множество всех натуральных чисел относительно сложения; эта П. является частью (подполугруппой) группы целых чисел по сложению или, как говорят, вложима в группу целых чисел. Следует отметить, что далеко не всякая П. вложима в группу.

В общей теории и некоторых приложениях важен следующий пример П. Пусть Х ≈ произвольное множество и пусть на множестве Fx всех конечных последовательностей элементов из Х определена операция *, заданная формулой

(x1,..., xn) * (y1,..., ym) = (x1,..., xn, y1,..., ym).

Тогда Fxотносительно операции * является П.; она называется свободной П. на множестве X. Всякая П. есть гомоморфный образ (см. Гомоморфизм ) некоторой свободной П.

Всякая совокупность преобразований произвольного множества М, замкнутая относительно операции композиции (последовательного выполнения), будет П. относительно этой операции; такова, в частности, совокупность всех преобразований множества М, называется симметрической П. на множестве М. Многие важные совокупности преобразований оказываются П., причём часто они не являются группами. С другой стороны, всякая П. изоморфна (см. Изоморфизм ) некоторой П. преобразований. Таким образом, именно понятие П. оказывается наиболее подходящим для изучения в самом общем виде преобразований. В большой степени через рассмотрение преобразований осуществляются связи теории П. с другими областями математики, такими, например, как современная дифференциальная геометрия, функциональный анализ, абстрактно-алгебраическая теория автоматов.

Первые исследования, посвященные П., относятся к 20-м гг. 20 в. К концу 50-х гг. теория П. сформировалась в самостоятельную ветвь современной алгебры и продолжает активно разрабатываться. Изучением абстрактных (т. е. не зависящих от конкретной природы элементов) свойств всевозможных ассоциативных операций занимается т. н. алгебраическая теория П. Одна из главных её задач состоит в описании строения различных П., их классификации. Наложение на полугрупповую операцию тех или иных дополнительных ограничений выделяет ряд важных типов П., среди которых т. н. вполне простые П., инверсные П. и др. Заметную часть общей теории составляет теория представлений П. преобразованиями и матрицами. Внесение в П. дополнительных структур, согласованных с полугрупповой операцией, выделяет особые разделы теории П., таких, как, например, теория топологических П.

Лит.: Сушкевич А. К., Теория обобщенных групп, Хар. ≈ К., 1937; Ляпин Е. С., Полугруппы, М., 1960; Клиффорд А. Х., Престон Г. Б., Алгебраическая теория полугрупп, пер. с англ., т. 1≈2, М., 1972; Hofmann К., Mostert P., Elements of compact semigroups, Columbus (Ohio), 1966.

Л. Н. Шеврин.

Википедия

Полугруппа

Полугруппа в общей алгебре — множество с заданной на нём ассоциативной бинарной операцией (S,  * ). Существуют разногласия по поводу того, нужно ли включать требование непустоты в определение полугруппы; отдельные авторы даже настаивают на необходимости наличия нейтрального элемента . Однако более общепринятым является подход, согласно которому полугруппа не обязательно является непустой и не обязательно содержит нейтральный элемент. Полугруппа с нейтральным элементом называется моноидом ; любую полугруппу S, не содержащую нейтральный элемент, можно превратить в моноид, добавив к ней некоторый элемент e ∉ S и определив es = s = ses ∈ S ∪ {e};  полученный моноид обычно обозначается как S.

Примеры полугрупп: положительные целые числа с операцией сложения , множество всех отображений множества в себя с операцией композиции , множество всех слов над некоторым алфавитом с операцией конкатенации . Любая группа является также и полугруппой; Идеал кольца всегда является полугруппой относительно операции умножения.