Поиск значения / толкования слов

Раздел очень прост в использовании. В предложенное поле достаточно ввести нужное слово, и мы вам выдадим список его значений. Хочется отметить, что наш сайт предоставляет данные из разных источников – энциклопедического, толкового, словообразовательного словарей. Также здесь можно познакомиться с примерами употребления введенного вами слова.

Большая Советская Энциклопедия

Интегральные уравнения

уравнения, содержащие неизвестные функции под знаком интеграла. Многочисленные задачи физики и математической физики приводят к И. у. различных типов. Пусть, например, требуется с помощью некоторого оптического прибора получить изображение линейного объекта А, занимающего отрезок 0 £ x £ l оси Ox, причём освещённость объекта характеризуется плотностью u(x). Изображение В представляет собой некоторый отрезок другой оси x1; последний путём подходящего выбора начала отсчёта и единицы длины также можно совместить с отрезком 0 £ x1 £ l . Если дифференциально малый участок (х, х + Dх) объекта А вызывает освещённость изображения В с плотностью K(x1, x)u(x)dx, где функция K(x1, x) определяется свойствами оптического прибора, то полная освещённость изображения будет иметь плотность В зависимости от того, хотят ли добиться заданной освещённости v(x

  1. изображения или «точного» фотографического изображения [v(x) = ku(x), где постоянная k заранее не фиксируется], или, наконец, определённой разницы освещённости А и В [u(x) ≈ v(x) = f(x)], приходят к различным И. у. относительно функции u(x):

    Вообще, линейным интегральным уравнением 1-го рода называется уравнение вида

    линейным интегральным уравнением 2-го рода, или уравнением Фредгольма,≈уравнение вида

    [при f (x) º 0 оно называется однородным уравнением Фредгольма]; обычно рассматриваются уравнения Фредгольма с параметром l:

    Во всех уравнениях функция

    ≈ так называемое ядро И. у. ≈ известна, так же, как функция f (x) (а £ х £ b); искомой является функция u(x) (а £ х £ b).

    Функции K(x, y), f (x), u(x) и параметр уравнения l могут принимать как действительные, так и комплексные значения. В частном случае, когда ядро K(x, y) обращается в нуль при у > х, получается уравнение Вольтерра:

    И. у. называется особым, если хотя бы один из пределов интегрирования бесконечен или ядро K(x, y) обращается в бесконечность в одной или нескольких точках квадрата а £ х £ b, а £ y £ b или на некоторой линии. И. у. может относиться и к функциям нескольких переменных: таково, например, уравнение

    Рассматриваются также нелинейные И. у., например уравнения вида

    или

    Линейные И. у. 2-го рода решаются следующими методами: 1) решение u(x) получается в виде ряда по степеням l (сходящегося в некотором круге |l|<K) с коэффициентами, зависящими от х (метод Вольтерра ≈ Неймана);

  2. решение u(x), при тех значениях l, при которых оно вообще существует, выражается через некоторые целые функции от l (метод Фредгольма);

  3. в случае, когда ядро симметрично, т. е. К(х, y) º К(у, x), решение u(x) выражается в виде ряда по ортогональным функциям uк(х), являющимся ненулевыми решениями соответствующего однородного уравнения

    (последнее имеет отличные от нуля решения лишь при некоторых специальных значениях параметра l = lк, k = 1, 2, ...) (метод Гильберта ≈ Шмидта);

  4. в некоторых частных случаях решение сравнительно просто получается с помощью Лапласа преобразования ;

  5. в случае, когда

    (так называемое вырожденное ядро), отыскание u(х) сводится к решению системы алгебраических уравнений. Приближённые решения можно получить, либо применив к ═какую-либо формулу численного интегрирования, либо заменив данное ядро К(х, y) некоторым вырожденным ядром, мало отличающимся от К(х, у). К И. у. часто сводятся краевые задачи для дифференциальных уравнений, обыкновенных и с частными производными; такое сведение имеет и теоретическую и практическую ценность.

    Лит.: Смирнов В. И., Курс высшей математики, 3 изд., т. 4, М., 1957; Петровский И. Г., Лекции по теории интегральных уравнений, 3 изд., М., 1965; Канторович Л. В. и Крылов В. И., Приближённые методы высшего анализа, 5 изд., Л. ≈ М., 1962.

    Д. А. Васильков.