Поиск значения / толкования слов

Раздел очень прост в использовании. В предложенное поле достаточно ввести нужное слово, и мы вам выдадим список его значений. Хочется отметить, что наш сайт предоставляет данные из разных источников – энциклопедического, толкового, словообразовательного словарей. Также здесь можно познакомиться с примерами употребления введенного вами слова.

Энциклопедический словарь, 1998 г.

интегральное исчисление

раздел математики, в котором изучаются свойства и способы вычисления интегралов и их приложения к решению различных математических, физических и других задач. В систематической форме интегральное исчисление было предложено в 17 в. И. Ньютоном и Г. Лейбницем. Интегральное исчисление тесно связано с дифференциальным исчислением; интегрирование (нахождение интеграла) есть действие, обратное дифференцированию: по данной непрерывной функции f(x) ищется функция F(x) (первообразная), для которой f(x) является производной. Вместе с F(x) первообразной функцией для f(x) является и F(x) + C, где С - любая постоянная. Общее выражение F(x) + C первообразных непрерывной функции f(x) называется неопределенным интегралом; он обозначается. Определенным интегралом непрерывной функции f(x) на отрезке [a, b], разделенном точками (рис.), называется предел интегральных сумм, где, при условии, что наибольшая разность стремится к нулю и число точек деления неограниченно увеличивается; его обозначают (самый знак возник из первой буквы S латинского слова Summa). Через определенные интегралы выражаются площади плоских фигур, длины кривых, объемы и поверхности тел, координаты центров тяжести, моменты инерции, работа, производимая данной силой, и т.д. О связи между определенным интегралом и первообразной Ньютона - Лейбница формула. Понятие интеграла распространяется на функции многих переменных (см. Кратный интеграл, Криволинейный интеграл, Поверхностный интеграл) ИНТЕГРАЛЬНОЕ УРАВНЕНИЕ уравнение, содержащее неизвестную функцию под знаком интеграла.

Большая Советская Энциклопедия

Интегральное исчисление

раздел математики, в котором изучаются свойства и способы вычисления интегралов и их приложения. И. и. тесно связано с дифференциальным исчислением и составляет вместе с ним одну из основных частей математического анализа (или анализа бесконечно малых). Центральными понятиями И. и. являются понятия определённого интеграла и неопределённого интеграла функций одного действительного переменного. Определённый интеграл. Пусть требуется вычислить площадь S «криволинейной трапеции» ≈ фигуры ABCD (см. рис.), ограниченной дугой непрерывной линии, уравнение которой у = f (x), отрезком AB оси абсцисс и двумя ординатами AD и BC. Для вычисления площади S этой криволинейной трапеции основание AB (отрезок [a, b]) разбивают на n участков (необязательно равных) точками а = x0 < x1 < ... < xn-1 < < xn= b, обозначая длины этих участков Dx1, Dx2, ..., Dxn; на каждом таком участке строят прямоугольники с высотами f (x

  1. , f (x

  2. , ..., f (xn) где xk ≈ некоторая точка из отрезка [xk - 1, xk] (на рис. заштрихован прямоугольник, построенный на k-м участке разбиения; f (xk) ≈ его высота). Сумма Sn площадей построенных прямоугольников рассматривается в качестве приближения к площади S криволинейной трапеции:

    S » Sn= f (x1) Dx1 + f (x2) Dx2 + f (xn) Dxn

    или, применяя для сокращения записи символ суммы S (греческая буква «сигма»):

    Указанное выражение для площади криволинейной трапеции тем точнее, чем меньше длины Dxk участков разбиения. Для нахождения точного значения площади S надо найти предел сумм Snв предположении, что число точек деления неограниченно увеличивается и наибольшая из длин Dxk стремится к нулю.

    Отвлекаясь от геометрического содержания рассмотренной задачи, приходят к понятию определённого интеграла от функции f (x), непрерывной на отрезке [а, b], как к пределу интегральных сумм Sn при том же предельном переходе. Этот интеграл обозначается

    Символ ò (удлинённое S ≈ первая буква слова Summa) называется знаком интеграла, f (x) ≈ подинтегральной функцией, числа а и b называются нижним и верхним пределами определённого интеграла. Если а = b, то, по определению, полагают

    кроме того,

    Свойства определённого интеграла:

    (k ≈ постоянная). Очевидно также, что

    (численное значение определённого интеграла не зависит от выбора обозначения переменной интегрирования).

    К вычислению определённых интегралов сводятся задачи об измерении площадей, ограниченных кривыми (задачи «нахождения квадратур»), длин дуг кривых («спрямление кривых»), площадей поверхностей тел, объёмов тел («нахождение кубатур»), а также задачи определения координат центров тяжести, моментов инерции, пути тела по известной скорости движения, работы, производимой силой, и многие другие задачи естествознания и техники. Например, длина дуги плоской кривой, заданной уравнением у = f (x) на отрезке [a, b], выражается интегралом

    объём тела, образованного вращением этой дуги вокруг оси Ox,≈ интегралом

    поверхность этого тела ≈ интегралом

    Фактическое вычисление определённых интегралов осуществляется различными способами. В отдельных случаях определённый интеграл можно найти, непосредственно вычисляя предел соответствующей интегральной суммы. Однако большей частью такой переход к пределу затруднителен. Некоторые определённые интегралы удаётся вычислять с помощью предварительного отыскания неопределённых интегралов (см. ниже). Как правило же, приходится прибегать к приближённому вычислению определённых интегралов, применяя различные квадратурные формулы (например, трапеций формулу , Симпсона формулу ). Такое приближённое вычисление может быть осуществлено на ЭВМ с абсолютной погрешностью, не превышающей любого заданного малого положительного числа. В случаях, не требующих большой точности, для приближённого вычисления определённых интегралов применяют графические методы (см. Графические вычисления ).

    Понятие определённого интеграла распространяется на случай неограниченного промежутка интегрирования, а также на некоторые классы неограниченных функций. Такие обобщения называются несобственными интегралами . Выражения вида

    где функция f(x, a) непрерывна по x называются интегралами, зависящими от параметра. Они служат основным средством изучения многих специальных функций (см., например, Гамма-функция ).

    Неопределённый интеграл. Нахождение неопределённых интегралов, или интегрирование, есть операция, обратная дифференцированию. При дифференцировании данной функции ищется её производная. При интегрировании, наоборот, ищется первообразная (или примитивная) функция ≈ такая функция, производная которой равна данной функции. Таким образом, функция F (x) является первообразной для данной функции f (x), если F"(x) = f (x) или, что то же самое, dF (x) = f (x) dx. Данная функция f (x) может иметь различные первообразные, но все они отличаются друг от друга только постоянными слагаемыми. Поэтому все первообразные для f (x) содержатся в выражении F (x) + С, которое называют неопределённым интегралом от функции f (x) и записывают

    Определённый интеграл как функция верхнего предела интегрирования

    («интеграл с переменным верхним пределом»), есть одна из первообразных подинтегральной функции. Это позволяет установить основную формулу И. и. (формулу Ньютона ≈ Лейбница):

    выражающую численное значение определённого интеграла в виде разности значений какой-либо первообразной подинтегральной функции при верхнем и нижнем пределах интегрирования.

    Взаимно обратный характер операций интегрирования и дифференцирования выражается равенствами

    Отсюда следует возможность получения из формул и правил дифференцирования соответствующих формул и правил интегрирования (см. табл., где C, m, a, k ≈ постоянные и m ¹ ≈1, а > 0).

    Таблица основных интегралов и правил интегрирования

    ¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾

    ¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾

    Трудность И. и. по сравнению с дифференциальным исчислением заключается в том, что интегралы от элементарных функций не всегда выражаются через элементарные, могут не выражаться, как говорят, «в конечном виде». И. и. располагает лишь отдельными приёмами интегрирования в конечном виде, область применения каждого из которых ограничена (способы интегрирования излагаются в учебниках математического анализа: обширные таблицы интегралов приводятся во многих справочниках).

    К классу функций, интегралы от которых всегда выражаются в элементарных функциях, принадлежит множество всех рациональных функций

    где P(x) и Q(x) ≈ многочлены. Многие функции, не являющиеся рациональными, также интегрируются в конечном виде, например функции, рационально зависящие от

    или же от x и рациональных степеней дроби

    В конечном виде интегрируются и многие трансцендентные функции, например рациональные функции синуса и косинуса. Функции, которые изображаются неопределёнными интегралами, не берущимися в конечном виде, представляют собой новые трансцендентные функции. Многие из них хорошо изучены (см., например, Интегральный логарифм , Интегральный синус и интегральный косинус , Интегральная показательная функция ).

    Понятие интеграла распространяется на функции многих действительных переменных (см. Кратный интеграл , Криволинейный интеграл , Поверхностный интеграл ), а также на функции комплексного переменного (см. Аналитические функции ) и вектор-функции (см. Векторное исчисление ).

    О расширении и обобщении понятия интеграла см. ст. Интеграл .

    Историческая справка. Возникновение задач И. и. связано с нахождением площадей и объёмов. Ряд задач такого рода был решен математиками Древней Греции. Античная математика предвосхитила идеи И. и. в значительно большей степени, чем дифференциального исчисления. Большую роль при решении таких задач играл исчерпывания метод , созданный Евдоксом Книдским и широко применявшийся Архимедом . Однако Архимед не выделил общего содержания интеграционных приёмов и понятия об интеграле, а тем более не создал алгоритма И. и. Учёные Среднего и Ближнего Востока в 9≈15 вв. изучали и переводили труды Архимеда на общедоступный в их среде арабский язык, но существенно новых результатов в И. и. они не получили. Деятельность европейских учёных в это время была ещё более скромной. Лишь в 16 и 17 вв. развитие естественных наук поставило перед математикой Европы ряд новых задач, в частности задачи на нахождения квадратур, кубатур и определение центров тяжести. Труды Архимеда, впервые изданные в 1544 (на латинском и греческом языках), стали привлекать широкое внимание, и их изучение явилось одним из важнейших отправных пунктов дальнейшего развития И. и. Античный «неделимых» метод был возрожден И. Кеплером . В более общей форме идеи этого метода были развиты Б. Кавальери , Э. Торричелли , Дж. Валлисом , Б. Паскалем . Методом «неделимых» был решен ряд геометрических и механических задач. К этому же времени относятся опубликованные позднее работы П. Ферма по квадрированию парабол n-й степени, а затем ≈ работы Х. Гюйгенса по спрямлению кривых.

    В итоге этих исследований выявилась общность приёмов интегрирования при решении внешне несходных задач геометрии и механики, приводившихся к квадратурам как к геометрическому эквиваленту определённого интеграла. Заключительным звеном в цепи открытий этого периода было установление взаимно обратной связи между задачами на проведение касательной и на квадратуры, т. е. между дифференцированием и интегрированием. Основные понятия и алгоритм И. и. были созданы независимо друг от друга И. Ньютоном и Г. Лейбницем . Последнему принадлежит термин «интегральное исчисление» и обозначение интеграла òydx.

    При этом в работах Ньютона основную роль играло понятие неопределённого интеграла (флюенты, см. Флюксий исчисление ), тогда как Лейбниц исходил из понятия определённого интеграла. Дальнейшее развитие И. и. в 18 в. связано с именами И. Бернулли и особенно Л. Эйлера . В начале 19 в. И. и. вместе с дифференциальным исчислением было перестроено О. Коши на основе теории пределов. В развитии И. и. в 19 в. приняли участие русские математики М. В. Остроградский , В. Я. Буняковский , П. Л. Чебышев . В конце 19 ≈ начале 20 вв. развитие теории множеств и теории функций действительного переменного привело к углублению и обобщению основных понятий И. и. (Б. Риман , А. Лебег и др.).

    Лит.: История. Ван дер Варден Б. Л., Пробуждающаяся наука, пер. с голл., М., 1959; Вилейтнер Г., История математики от Декарта до середины 19 столетия, пер. с нем., 2 изд., М., 1966; Строек Д. Я., Краткий очерк истории математики, пер. с нем., 2 изд., М., 1969; Cantor М.. Vorleslingen über Geschichte der Mathematik, 2 Aufl., Bd 3≈4, Lpz. ≈ B., 1901≈24.

    Работы основоположников и классиков И. и. Ньютон И., Математические работы, пер. с латин., М.≈Л., 1937; Лейбниц Г., Избранные отрывки из математических сочинений, пер. с. латин., «Успехи математических наук», 1948, т. 3, в. 1; Эйлер Л., Интегральное исчисление, пер. с латин., тт. 1≈3, М., 1956≈58; Коши О. Л., Краткое изложение уроков о дифференциальном и интегральном исчислении, пер. с франц., СПБ, 1831; его же, Алгебраический анализ, пер. с франц., Лейпциг, 1864.

    Учебники и учебные пособия по И. и. Хинчин Д. Я., Краткий курс математического анализа, 3 изд., 1957; Смирнов В. И., Курс высшей математики, 22 изд., т. 1, М., 1967; Фихтенгольц Г. М., Курс дифференциального и интегрального исчисления, 7 изд., т. 2, М., 1969; Ильин В., Позняк Э. Г., Основы математического анализа, 3 изд., ч. 1, М., 1971; Курант Р., Курс дифференциального и интегрального исчисления, пер. с нем. и англ., 4 изд., т. 1, М., 1967; Двайт Г.-Б., Таблицы интегралов и другие математические формулы, пер. с англ., М., 1964.

    Под редакцией академика А. Н. Колмогорова.

Википедия

Интегральное исчисление

Интегральное исчисление — раздел математического анализа , в котором изучаются понятия интеграла , его свойства и методы вычислений.