Поиск значения / толкования слов

Раздел очень прост в использовании. В предложенное поле достаточно ввести нужное слово, и мы вам выдадим список его значений. Хочется отметить, что наш сайт предоставляет данные из разных источников – энциклопедического, толкового, словообразовательного словарей. Также здесь можно познакомиться с примерами употребления введенного вами слова.

Энциклопедический словарь, 1998 г.

возрастание и убывание функции

понятия математического анализа. Функция f(x) называется возрастающей на отрезке [a, b], если для любой пары точек x1 и x2, a? x1 x2 ?b, выполняется неравенство f(x1) f(x2), и неубывающей, если f(x1) ? f(x2). Аналогично определяются убывание и невозрастание функции.

Большая Советская Энциклопедия

Возрастание и убывание функции

функция y = f (x) называется возрастающей на отрезке [a, b], если для любой пары точек х и х", а £ х < х" £ b выполняется неравенство f (x) £ f (x"), и строго возрастающей ≈ если выполняется неравенство f (x) < f (x"). Аналогично определяется убывание и строгое убывание функции. Например, функция у = х2 (рис., а) строго возрастает на отрезке [0,1], а

(рис., б) строго убывает на этом отрезке. Возрастающие функции обозначаются f (x)╜, а убывающие f (x)¯. Для того чтобы дифференцируемая функция f (x) была возрастающей на отрезке [а, b], необходимо и достаточно, чтобы её производная f"(x) была неотрицательной на [а, b].

Наряду с возрастанием и убыванием функции на отрезке рассматривают возрастание и убывание функции в точке. Функция у = f (x) называется возрастающей в точке x0, если найдётся такой интервал (a, b), содержащий точку x0, что для любой точки х из (a, b), х> x0, выполняется неравенство f (x0) £ f (x), и для любой точки х из (a, b), х< x0, выполняется неравенство f (x) £ f (x0). Аналогично определяется строгое возрастание функции в точке x0. Если f"(x0) > 0, то функция f (x) строго возрастает в точке x0. Если f (x) возрастает в каждой точке интервала (a, b), то она возрастает на этом интервале.

Лит.: Фихтенгольц Г. М., Курс дифференциального и интегрального исчисления, 6 изд., т. 1, М., 1966.

С. Б. Стечкин.