Поиск значения / толкования слов

Раздел очень прост в использовании. В предложенное поле достаточно ввести нужное слово, и мы вам выдадим список его значений. Хочется отметить, что наш сайт предоставляет данные из разных источников – энциклопедического, толкового, словообразовательного словарей. Также здесь можно познакомиться с примерами употребления введенного вами слова.

Энциклопедический словарь, 1998 г.

ортогональная система функций

система функций ??n(х)?, n=1, 2,..., заданных на отрезке [a, b] и удовлетворяющих следующему условию ортогональности: при k?l, где ?(x) некоторая функция, называемая весом. Напр., тригонометрическая система 1, sin x, cos x, sin 2x, cos 2x,... - ортогональная система функций с весом 1 на отрезке [-?, ?].

Большая Советская Энциклопедия

Ортогональная система функций

система функций {(jn (x)}, n = 1, 2,..., ортогональных с весом r (х) на отрезке [а, b], т. е. таких, что Примеры. Тригонометрическая система 1, cos nx, sin nx; n = 1, 2,..., ≈ О. с. ф. с весом 1 на отрезке [≈p, p]. Бесселя функции , где n = 1, 2,..., ═≈ положительные нули Jn(x), образуют для каждого n > ≈ 1/2 О. с. ф. с весом х на отрезке [0, l ]. Если каждая функция j (х) из О. с. ф. такова, что ═(условие нормированности), то такая система функций называется нормированной. Любую О. с. ф. можно нормировать, умножив j (х) на число ═≈ нормирующий множитель. Систематическое изучение О. с. ф. было начато в связи с методом Фурье решения краевых задач уравнений математической физики. Этот метод приводит, например, к разысканию решений Штурма ≈ Лиувилля задачи для уравнения [r(х) у" ]" + q (x) y = lу, удовлетворяющих граничным условиям у (а) + hy"(a) = 0, y (b) + Hy" (b) = 0, где h и Н ≈ постоянные. Эти решения ≈ т. н. собственные функции задачи ≈ образуют О. с. ф. с весом r (х) на отрезке [a, b ]. Чрезвычайно важный класс О. с. ф. ≈ ортогональные многочлены ≈ был открыт П. Л. Чебышевым в его исследованиях по интерполированию способом наименьших квадратов и проблеме моментов. В 20 в. исследования по О. с. ф. проводятся в основном на базе теории интеграла и меры Лебега. Это способствовало выделению этих исследований в самостоятельный раздел математики. Одна из основных задач теории О. с. ф.≈ задача о разложении функции f (x) в ряд вида , где {jп (х)} ≈ О. с. ф. Если положить формально , где {jп (х)} ≈ нормированная О. с. ф., и допустить возможность почленного интегрирования, то, умножая этот ряд на jп (х) r(х) и интегрируя от а до b, получим: ═(*) Коэффициенты Сп , называемые коэффициентами Фурье функции относительно системы {jn (x)}, обладают следующим экстремальным свойством: линейная форма ═наилучшим образом приближает в среднем эту функцию. Иными словами, средняя квадратичная ошибка с весом r(х): ═(*) имеет наименьшее значение по сравнению с ошибками, даваемыми при том же n другими линейными выражениями вида . Отсюда, в частности, получается т. н. неравенство Бесселя Ряд ═с коэффициентами Сп , вычисленными по формуле (*), называется рядом Фурье функции f (x) по нормированной О. с. ф. {jn (x)}. Для приложений первостепенную важность имеет вопрос, определяется ли однозначно функция f (x) своими коэффициентами Фурье. О. с. ф., для которых это имеет место, называется полными, или замкнутыми. Условия замкнутости О. с. ф. могут быть даны в нескольких эквивалентных формах.

  1. Любая непрерывная функция f (x) может быть с любой степенью точности приближена в среднем линейными комбинациями функций jk (x), то есть ═в этом случае говорят, что ряд ═сходится в среднем к функции f (x)].

  2. Для всякой функции f (x), квадрат которой интегрируем относительно веса r(х), выполняется условие замкнутости Ляпунова ≈ Стеклова:

  3. Не существует отличной от нуля функции с интегрируемым на отрезке [a, b ] квадратом, ортогональной ко всем функциям jn (x), n = 1, 2,....

    Если рассматривать функции с интегрируемым квадратом как элементы гильбертова пространства , то нормированные О. с. ф. будут системами координатных ортов этого пространства, а разложение в ряд по нормированным О. с. ф. ≈ разложением вектора по ортам. При этом подходе многие понятия теории нормированных О. с. ф. приобретают наглядный геометрический смысл. Например, формула (*) означает, что проекция вектора на орт равна скалярному произведению вектора и орта; равенство Ляпунова ≈ Стеклова может быть истолковано как теорема Пифагора для бесконечномерного пространства: квадрат длины вектора равен сумме квадратов его проекций на оси координат; замкнутость О. с. ф. означает, что наименьшее замкнутое подпространство, содержащее все векторы этой системы, совпадает со всем пространством и т.д.

    Лит.: Толстов Г. П., Ряды Фурье, 2 изд., М., 1960; Натансон И. П., Конструктивная теория функций, М. ≈ Л., 1949; его же, Теория функций вещественной переменной, 2 изд., М., 1957; Джексон Д., Ряды Фурье и ортогональные полиномы, пер. с англ., М., 1948; Качмаж С., Штейнгауз Г., Теория ортогональных рядов, пер. с нем., М., 1958.